Arduino > Programmateur Arduino ISP

1.  Introduction

Un Arduino Leonardo peut programmer d'autres microcontrôleurs AVR. Ce est qui surtout utile pour créer des Arduino autonomes.

À noter que la procédure décrite dans cette page fonctionne seulement avec des microcontrôleurs vierges ou qui utilisent l'horloge interne (internal clock). Si le microcontrôleur a été configuré pour utiliser une horloge externe, cette dernière doit être ajoutée au circuit pour pouvoir programmer le microcontrôleur.

2.  Le circuit pour programmer un ATMEGA168 à partir d'un Arduino Leonardo

LeonardoATMEGA168
101
SCKSCK
MISOMISO
MOSIMOSI
GNDGND
arduino leonardo pinoutatmega168 pinout

3.  Procédure

3.1  Résumé

Initialisation (à faire une seule fois):

  1. Ajouter les fichiers nécessaires au sketchbook d'Arduino (Documents > Arduino).
  2. Programmer l'Arduino Leonardo en tant que programmateur ISP (Arduino as ISP (Leonardo)) avec la procédure habituelle de téléversement.
  3. Changer les «fuses» de l'ATMEGA168 en gravant le «bootloader».

Modification (à répéter chaque fois que vous voulez changer le code de votre Arduino autonome):

  1. Téléverser «Blink» (ou le code de votre choix) sur le microcontrôleur ATMEGA168 avec votre Arduino Leonardo en tant que programmateur ISP (Arduino as ISP).
  2. Débrancher l'Arduino Leonardo et installer une DEL et résistance sur votre nouvel Arduino autonome à la broche 13.

3.2  Initialisation

Fermer le logiciel Arduino.

Ajouter ce dossier (tof) au sous-dossier hardware (à créer s'il n'existe pas) du sketchbook d'Arduino (Documents > Arduino > hardware). Au final, le chemin devrait être: Documents > Arduino > hardware > tof

Démarrer le logiciel Arduino et téléverser le code suivant sur l'Arduino Leonardo:

CLIQUER POUR AFFICHER/CACHER LE CODE

/* CHANGES FOR LEONARDO:
FROM:
#define RESET     SS

TO:
#define RESET     10
*/

// ArduinoISP version 04m3
// Copyright (c) 2008-2011 Randall Bohn
// If you require a license, see
//     http://www.opensource.org/licenses/bsd-license.php
//
// This sketch turns the Arduino into a AVRISP
// using the following arduino pins:
//
// pin name:    not-mega:         mega(1280 and 2560)
// slave reset: 10:               53
// MOSI:        11:               51
// MISO:        12:               50
// SCK:         13:               52
//
// Put an LED (with resistor) on the following pins:
// 9: Heartbeat   - shows the programmer is running
// 8: Error       - Lights up if something goes wrong (use red if that makes sense)
// 7: Programming - In communication with the slave
//
// 23 July 2011 Randall Bohn
// -Address Arduino issue 509 :: Portability of ArduinoISP
// http://code.google.com/p/arduino/issues/detail?id=509
//
// October 2010 by Randall Bohn
// - Write to EEPROM > 256 bytes
// - Better use of LEDs:
// -- Flash LED_PMODE on each flash commit
// -- Flash LED_PMODE while writing EEPROM (both give visual feedback of writing progress)
// - Light LED_ERR whenever we hit a STK_NOSYNC. Turn it off when back in sync.
// - Use pins_arduino.h (should also work on Arduino Mega)
//
// October 2009 by David A. Mellis
// - Added support for the read signature command
//
// February 2009 by Randall Bohn
// - Added support for writing to EEPROM (what took so long?)
// Windows users should consider WinAVR's avrdude instead of the
// avrdude included with Arduino software.
//
// January 2008 by Randall Bohn
// - Thanks to Amplificar for helping me with the STK500 protocol
// - The AVRISP/STK500 (mk I) protocol is used in the arduino bootloader
// - The SPI functions herein were developed for the AVR910_ARD programmer
// - More information at http://code.google.com/p/mega-isp

#include "pins_arduino.h"
#define RESET     10

#define LED_HB    9
#define LED_ERR   8
#define LED_PMODE 7
#define PROG_FLICKER true

#define HWVER 2
#define SWMAJ 1
#define SWMIN 18

// STK Definitions
#define STK_OK      0x10
#define STK_FAILED  0x11
#define STK_UNKNOWN 0x12
#define STK_INSYNC  0x14
#define STK_NOSYNC  0x15
#define CRC_EOP     0x20 //ok it is a space...

void pulse(int pin, int times);

void setup() {
        Serial.begin(19200);
        pinMode(LED_PMODE, OUTPUT);
        pulse(LED_PMODE, 2);
        pinMode(LED_ERR, OUTPUT);
        pulse(LED_ERR, 2);
        pinMode(LED_HB, OUTPUT);
        pulse(LED_HB, 2);
}

int error=0;
int pmode=0;
// address for reading and writing, set by 'U' command
int here;
uint8_t buff[256]; // global block storage

#define beget16(addr) (*addr * 256 + *(addr+1) )
typedef struct param {
        uint8_t devicecode;
        uint8_t revision;
        uint8_t progtype;
        uint8_t parmode;
        uint8_t polling;
        uint8_t selftimed;
        uint8_t lockbytes;
        uint8_t fusebytes;
        int flashpoll;
        int eeprompoll;
        int pagesize;
        int eepromsize;
        int flashsize;
}
parameter;

parameter param;

// this provides a heartbeat on pin 9, so you can tell the software is running.
uint8_t hbval=128;
int8_t hbdelta=8;
void heartbeat() {
        if (hbval > 192) hbdelta = -hbdelta;
        if (hbval < 32) hbdelta = -hbdelta;
        hbval += hbdelta;
        analogWrite(LED_HB, hbval);
        delay(20);
}


void loop(void) {
        // is pmode active?
        if (pmode) digitalWrite(LED_PMODE, HIGH);
        else digitalWrite(LED_PMODE, LOW);
        // is there an error?
        if (error) digitalWrite(LED_ERR, HIGH);
        else digitalWrite(LED_ERR, LOW);

        // light the heartbeat LED
        heartbeat();
        if (Serial.available()) {
                avrisp();
        }
}

uint8_t getch() {
        while(!Serial.available());
        return Serial.read();
}
void fill(int n) {
        for (int x = 0; x < n; x++) {
                buff[x] = getch();
        }
}

#define PTIME 30
void pulse(int pin, int times) {
        do {
                digitalWrite(pin, HIGH);
                delay(PTIME);
                digitalWrite(pin, LOW);
                delay(PTIME);
        }
        while (times--);
}

void prog_lamp(int state) {
        if (PROG_FLICKER)
        digitalWrite(LED_PMODE, state);
}

void spi_init() {
        uint8_t x;
        SPCR = 0x53;
        x=SPSR;
        x=SPDR;
}

void spi_wait() {
        do {
        }
        while (!(SPSR & (1 << SPIF)));
}

uint8_t spi_send(uint8_t b) {
        uint8_t reply;
        SPDR=b;
        spi_wait();
        reply = SPDR;
        return reply;
}

uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
        uint8_t n;
        spi_send(a);
        n=spi_send(b);
        //if (n != a) error = -1;
        n=spi_send(c);
        return spi_send(d);
}

void empty_reply() {
        if (CRC_EOP == getch()) {
                Serial.print((char)STK_INSYNC);
                Serial.print((char)STK_OK);
        }
        else {
                error++;
                Serial.print((char)STK_NOSYNC);
        }
}

void breply(uint8_t b) {
        if (CRC_EOP == getch()) {
                Serial.print((char)STK_INSYNC);
                Serial.print((char)b);
                Serial.print((char)STK_OK);
        }
        else {
                error++;
                Serial.print((char)STK_NOSYNC);
        }
}

void get_version(uint8_t c) {
        switch(c) {
                case 0x80:
                breply(HWVER);
                break;
                case 0x81:
                breply(SWMAJ);
                break;
                case 0x82:
                breply(SWMIN);
                break;
                case 0x93:
                breply('S'); // serial programmer
                break;
                default:
                breply(0);
        }
}

void set_parameters() {
        // call this after reading paramter packet into buff[]
        param.devicecode = buff[0];
        param.revision   = buff[1];
        param.progtype   = buff[2];
        param.parmode    = buff[3];
        param.polling    = buff[4];
        param.selftimed  = buff[5];
        param.lockbytes  = buff[6];
        param.fusebytes  = buff[7];
        param.flashpoll  = buff[8];
        // ignore buff[9] (= buff[8])
        // following are 16 bits (big endian)
        param.eeprompoll = beget16(&buff[10]);
        param.pagesize   = beget16(&buff[12]);
        param.eepromsize = beget16(&buff[14]);

        // 32 bits flashsize (big endian)
        param.flashsize = buff[16] * 0x01000000
        + buff[17] * 0x00010000
        + buff[18] * 0x00000100
        + buff[19];

}

void start_pmode() {
        spi_init();
        // following delays may not work on all targets...
        pinMode(RESET, OUTPUT);
        digitalWrite(RESET, HIGH);
        pinMode(SCK, OUTPUT);
        digitalWrite(SCK, LOW);
        delay(50);
        digitalWrite(RESET, LOW);
        delay(50);
        pinMode(MISO, INPUT);
        pinMode(MOSI, OUTPUT);
        spi_transaction(0xAC, 0x53, 0x00, 0x00);
        pmode = 1;
}

void end_pmode() {
        pinMode(MISO, INPUT);
        pinMode(MOSI, INPUT);
        pinMode(SCK, INPUT);
        pinMode(RESET, INPUT);
        pmode = 0;
}

void universal() {
        int w;
        uint8_t ch;

        fill(4);
        ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]);
        breply(ch);
}

void flash(uint8_t hilo, int addr, uint8_t data) {
        spi_transaction(0x40+8*hilo,
        addr>>8 & 0xFF,
        addr & 0xFF,
        data);
}
void commit(int addr) {
        if (PROG_FLICKER) prog_lamp(LOW);
        spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0);
        if (PROG_FLICKER) {
                delay(PTIME);
                prog_lamp(HIGH);
        }
}

//#define _current_page(x) (here & 0xFFFFE0)
int current_page(int addr) {
        if (param.pagesize == 32)  return here & 0xFFFFFFF0;
        if (param.pagesize == 64)  return here & 0xFFFFFFE0;
        if (param.pagesize == 128) return here & 0xFFFFFFC0;
        if (param.pagesize == 256) return here & 0xFFFFFF80;
        return here;
}


void write_flash(int length) {
        fill(length);
        if (CRC_EOP == getch()) {
                Serial.print((char) STK_INSYNC);
                Serial.print((char) write_flash_pages(length));
        }
        else {
                error++;
                Serial.print((char) STK_NOSYNC);
        }
}

uint8_t write_flash_pages(int length) {
        int x = 0;
        int page = current_page(here);
        while (x < length) {
                if (page != current_page(here)) {
                        commit(page);
                        page = current_page(here);
                }
                flash(LOW, here, buff[x++]);
                flash(HIGH, here, buff[x++]);
                here++;
        }

        commit(page);

        return STK_OK;
}

#define EECHUNK (32)
uint8_t write_eeprom(int length) {
        // here is a word address, get the byte address
        int start = here * 2;
        int remaining = length;
        if (length > param.eepromsize) {
                error++;
                return STK_FAILED;
        }
        while (remaining > EECHUNK) {
                write_eeprom_chunk(start, EECHUNK);
                start += EECHUNK;
                remaining -= EECHUNK;
        }
        write_eeprom_chunk(start, remaining);
        return STK_OK;
}
// write (length) bytes, (start) is a byte address
uint8_t write_eeprom_chunk(int start, int length) {
        // this writes byte-by-byte,
        // page writing may be faster (4 bytes at a time)
        fill(length);
        prog_lamp(LOW);
        for (int x = 0; x < length; x++) {
                int addr = start+x;
                spi_transaction(0xC0, (addr>>8) & 0xFF, addr & 0xFF, buff[x]);
                delay(45);
        }
        prog_lamp(HIGH);
        return STK_OK;
}

void program_page() {
        char result = (char) STK_FAILED;
        int length = 256 * getch();
        length += getch();
        char memtype = getch();
        // flash memory @here, (length) bytes
        if (memtype == 'F') {
                write_flash(length);
                return;
        }
        if (memtype == 'E') {
                result = (char)write_eeprom(length);
                if (CRC_EOP == getch()) {
                        Serial.print((char) STK_INSYNC);
                        Serial.print(result);
                }
                else {
                        error++;
                        Serial.print((char) STK_NOSYNC);
                }
                return;
        }
        Serial.print((char)STK_FAILED);
        return;
}

uint8_t flash_read(uint8_t hilo, int addr) {
        return spi_transaction(0x20 + hilo * 8,
        (addr >> 8) & 0xFF,
        addr & 0xFF,
        0);
}

char flash_read_page(int length) {
        for (int x = 0; x < length; x+=2) {
                uint8_t low = flash_read(LOW, here);
                Serial.print((char) low);
                uint8_t high = flash_read(HIGH, here);
                Serial.print((char) high);
                here++;
        }
        return STK_OK;
}

char eeprom_read_page(int length) {
        // here again we have a word address
        int start = here * 2;
        for (int x = 0; x < length; x++) {
                int addr = start + x;
                uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF);
                Serial.print((char) ee);
        }
        return STK_OK;
}

void read_page() {
        char result = (char)STK_FAILED;
        int length = 256 * getch();
        length += getch();
        char memtype = getch();
        if (CRC_EOP != getch()) {
                error++;
                Serial.print((char) STK_NOSYNC);
                return;
        }
        Serial.print((char) STK_INSYNC);
        if (memtype == 'F') result = flash_read_page(length);
        if (memtype == 'E') result = eeprom_read_page(length);
        Serial.print(result);
        return;
}

void read_signature() {
        if (CRC_EOP != getch()) {
                error++;
                Serial.print((char) STK_NOSYNC);
                return;
        }
        Serial.print((char) STK_INSYNC);
        uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00);
        Serial.print((char) high);
        uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00);
        Serial.print((char) middle);
        uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00);
        Serial.print((char) low);
        Serial.print((char) STK_OK);
}
//////////////////////////////////////////
//////////////////////////////////////////


////////////////////////////////////
////////////////////////////////////
int avrisp() {
        uint8_t data, low, high;
        uint8_t ch = getch();
        switch (ch) {
                case '0': // signon
                error = 0;
                empty_reply();
                break;
                case '1':
                if (getch() == CRC_EOP) {
                        Serial.print((char) STK_INSYNC);
                        Serial.print("AVR ISP");
                        Serial.print((char) STK_OK);
                }
                break;
                case 'A':
                get_version(getch());
                break;
                case 'B':
                fill(20);
                set_parameters();
                empty_reply();
                break;
                case 'E': // extended parameters - ignore for now
                fill(5);
                empty_reply();
                break;

                case 'P':
                start_pmode();
                empty_reply();
                break;
                case 'U': // set address (word)
                here = getch();
                here += 256 * getch();
                empty_reply();
                break;

                case 0x60: //STK_PROG_FLASH
                low = getch();
                high = getch();
                empty_reply();
                break;
                case 0x61: //STK_PROG_DATA
                data = getch();
                empty_reply();
                break;

                case 0x64: //STK_PROG_PAGE
                program_page();
                break;

                case 0x74: //STK_READ_PAGE 't'
                read_page();
                break;

                case 'V': //0x56
                universal();
                break;
                case 'Q': //0x51
                error=0;
                end_pmode();
                empty_reply();
                break;

                case 0x75: //STK_READ_SIGN 'u'
                read_signature();
                break;

                // expecting a command, not CRC_EOP
                // this is how we can get back in sync
                case CRC_EOP:
                error++;
                Serial.print((char) STK_NOSYNC);
                break;

                // anything else we will return STK_UNKNOWN
                default:
                error++;
                if (CRC_EOP == getch())
                Serial.print((char)STK_UNKNOWN);
                else
                Serial.print((char)STK_NOSYNC);
        }
}

Chosir Standalone w/ ATmega168, Internal 8Mhz dans le menu Tools > Board:

Choisir Arduino as ISP (Leonardo) en tant que programmateur et vérifier que le port du Leonardo est encore sélectionné:

Téléverser le «bootloader»:

3.3  Modification

Chosir Standalone w/ ATmega168, Internal 8Mhz dans le menu Tools > Board:

Choisir Arduino as ISP (Leonardo) en tant que programmateur et vérifier que le port du Leonardo est encore sélectionné:

Ouvrir l'exemple Blink (ou tout autre code de votre choix) et le téléverser sur l'Arduino avec le menu File > Upload using programmer:

Vous pouvez maintenant retirer le programmateur et installer une DEL sur la broche Arduino 13:

4.  Liens